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Introduction
Artificial intelligence (AI) is broadly defined as the ability 

of a computer to perform tasks that usually require human 
intelligence. The most characteristic trait of an AI algorithm 
(also called a model) is that it starts as a blank slate with no 
better performance than a random guess. Gradually, it obtains 
its functionality by being shown many real-world examples 
of the problem it is designed to solve,1 in a process called 
training. Typically, AI models are used to classify images2 and 
delineate borders between imaged structures.3 For these so-
called discriminative tasks, AI easily outperforms any manually 
constructed algorithm, and in some cases even surpasses the 
accuracy of humans.4,5 Discriminative AI is already approaching 
real-world deployment, with the first AI algorithms being 
approved for screening and clinical decision-making support.6,7

Other types of AI include generative models, which are 
typically designed to output images instead of only evaluating 
them. They originated in an attempt to understand the internal 
workings of discriminative algorithms in the late 2000s,8 and 
during the following decade were developed further to produce 
fake (synthetic) images on their own. Some examples of 
synthetically generated images are shown below: a somewhat 
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Artificial intelligence (AI) is currently one of the hottest topics in ophthalmic research. AI has been used with great success for an 
assortment of imaging-based tasks, such as screening, diagnosis, and staging of ophthalmic diseases. There are, however, other 
useful ways of employing AI. Instead of simply classifying an image, the so-called generative AI algorithms are able to do the 
reverse—generate new images based on input. With this approach, it is possible, for example, to predict retinal appearance after 
treatment, enhance images, and convert between imaging modalities. This article aims to summarize the most promising of such 

generative AI algorithms in ophthalmology.

Figure 1. Examples of AI-generated images. (a) A photo processed by Google’s DeepDream generator.9 Original image on the left, and the processed image on the right (private photo). 
(b) Synthetic photograph of a person that does not exist.33
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Key concepts:
 • Artificial intelligence (AI): ability of a computer program 
to perform tasks that usually require human intelligence 
(e.g., recognition of objects, composing text, and 
interpreting speech)
 • AI model: an algorithm designed for a specific task (e.g., 
diagnosis of glaucoma on fundus photos)
 • AI training: the process where an AI model learns to 
perform a specific task by being shown multiple correctly 
performed examples
 • Discriminative AI: type of AI algorithms that classify 
data (e.g., diabetic retinopathy grading) or parts of 
images (e.g., delineating retinal layers and edema on 
OCT)
 • Generative AI: type of AI algorithms that generate data, 
for example, images, resembling those it was shown 
during training
 • Synthetic image: an image produced by a generative AI 
model, that is, arrived at by computation alone and not 
resulting from an imaging device (camera, scanner etc.)
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nightmarish version of a photo in which 
unrelated patterns are accentuated by 
Google’s DeepDream9 (Figure 1a), and the 
extremely photorealistic portrait of a person 
that does not exist10,11 (Figure 1b). Although 
these examples might be of limited broader 
relevance, the usefulness of generative 
models has been proved for a wide variety of 
text and imaging tasks.
In contrast, scant attention has been 

devoted to generative AI in medical research. 
There is, however, growing recognition that 
there are useful ways to apply generative 
approaches in this context. Below, we 
examine the potential applications of 
generative models in ophthalmology.

Competition is the key to success
The core concept of training a generative 

Al model is competition between two 
models:12 a so-called generator, which 
attempts to output data that is as realistic 
as possible, and a discriminator, which tries 
to separate the generated samples from real 
ones. The generator is improved according 
to the feedback from the discriminator, 
making its output more realistic. This 
makes generated images more difficult to 
distinguish from real ones, forcing further 
refinement of the discriminator, which is 
then again used to improve the generator 

model, and so on. This process repeats until 
the discriminator can no longer discern 
real from generated samples, ensuring as 
realistic an output as possible from the 
generator. The process is schematically 
represented in Figure 2.
With this basic approach, a number 

of more complex models with extended 
functionality can be created, several of 
which are referenced below. From a technical 
standpoint, there is nothing limiting 
generative AI to purely image-based data. 
This is clearly demonstrated by the recently 
released ChatGPT model by OpenAI,13 which 
has an almost human-like ability to generate 
cohesive text. Although this model might be 
used to answer patient questions for several 
ophthalmic diseases,14 most generative 
AI models in ophthalmology are currently 
image based. The scope of the discussion 

below is therefore limited to addressing 
these.

Generating new images
A generative AI algorithm trained on an 

imaging dataset can produce new images 
that resemble the original data (Figure 3). 
Generated images are termed synthetic as 
they do not result from imaging real patients 
but are rather created using patterns the 
AI model has learned from the original 
dataset. Despite this, synthetic images can 
be convincingly realistic (such as the fake 
person photo in Figure 1b), to a point where 
experts cannot distinguish between real and 
artificial data.15 The process of generating 
new images has the additional benefit of 
being highly controllable. Synthetic OCT 
scans can, for example, be generated with 
a specific amount of subretinal fluid or a 

Figure 2. The training process of a generative AI model. The generative capabilities of an AI algorithm are trained by making two models (a generator and a discriminator) compete 
against each other. While the generator attempts to produce output that is as realistic as possible, the discriminator attempts to find features that distinguish real images from 
generated ones. In the example above, a generative model that outputs images of houses is trained. The process starts by the generator (green rhomboid shape) outputting an image 
(1).  The discriminator (red rhomboid) then attempts to distinguish it from a dataset of images of real houses (2). Features that were used to single out the generated image (3) are then 
used as feedback to improve the generator (4). The process is repeated until the discriminator cannot discern between real and generated samples.

Figure 3. Synthetic OCT images. These realistic-looking OCT scans 
were not taken from real patients but rather generated by an AI 
model (own data based on a public OCT dataset, unpublished).
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Figure 4. Controlling features of synthetic OCT images. This figure demonstrates that generative AI can produce images 
with specific features on demand. In the above grid, first, a synthetic image is generated (middle, framed in red). 
Subsequent images are generated by varying two parameters: the amount of subretinal fluid (x-axis) and size of pigment 
epithelium detachment (PED, y-axis).
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determined size of pigment epithelium 
detachment (Figure 4).
There is no limit to how many new 

synthetic images a trained generative model 
can produce. It can thus be a viable option 
for expansion of existing datasets without 
recruitment of new patients. This, in turn, 
can be useful for training discriminative AI 
models, which require large amounts of 
data, or providing additional examples for 
training of clinical personnel—especially 
when specific disease stages can be 
generated on demand.
The fact that neither the model itself nor 

the images it generates contain the training 
dataset can be exploited for data sharing. 
Moving patient images across jurisdictions 
can be a difficult and bureaucratic process. 
Transferring an AI model, on the other hand, 
does not reveal any sensitive or identifiable 
personal information and is thus not subject 
to regulations.

Predicting the future
Generative models can be trained to 

predict future appearances based on present 
imaging results. This has been shown to work 
well for prediction of visual field progression 
in glaucoma patients16,17 or postoperative 
facial appearance after surgery for thyroid-
associated orbitopathy.18 Another important 

use is forecasting macular OCT changes after 
anti-VEGF injections in neovascular AMD.19 

This might be used to create a more precise 
treatment plan tailored to each patient. 
Since this is done before any treatment is 
administered, over-treatment and frequent 
follow-ups can be avoided.20,21

Image enhancement
AI can improve existing images in various 

ways. For example, a poor-quality OCT image 
(e.g., due to cataract or vitreous opacities) 
can be enhanced by noise reduction, 
producing a clearer depiction of anatomical 
structures.22 A synthetic image with higher 
resolution and better detail can be produced 
using a smaller and less detailed version.23 
When applied to visual fields, AI denoising 
can make discovering progression easier.17,24 

Artifacts can also be removed, for example, 
the crescent shadow on fundus photographs 
caused by small pupil size,25 eliminating the 
need to re-take photos and thus saving time.

Converting between imaging types
One of the most recent developments 

in generative AI is the ability to convert 
between imaging modalities. By analyzing 
one type of imaging, AI models can predict 
appearance of the same eye when imaged by 
another modality.
A practical example is widefield imaging 

with a scanning laser ophthalmoscope (e.g., 
Optos®). The resulting image is not true color 
but is rather composed of red and green 
wavelengths, giving it a greenish tint. This 
is often cited as being one of the drawbacks 
of these devices.26 By using generative AI, a 
real color image of the central retina can be 
produced, based solely on an Optos image.27

Even more intriguing is the ability to 
translate between structural and functional 
imaging—an OCT scan can be converted 
to an approximation of a visual field,28 
and both OCTs and fundus photos can be 
used to generate synthetic fluorescein 
angiograms.29,30

A future scenario
All these algorithms are useful on their 

own, but their combined application may 
further enhance and simplify the clinical 
workflow. The following hypothetical case is 
an example of clinical implementation of the 
above-mentioned algorithms.
An elderly patient with dry AMD and a 

suspicion of primary open-angle glaucoma 
presents with diffuse symptoms of vision 
deterioration in one eye. Being an elderly 
woman, she cannot cope with more than a 
single imaging session, and her pupils dilate 
poorly. Therefore, only Optos macula OCT 
and a widefield fundus image are obtained.
With the AI system, artifacts from the 

eyelashes and small pupil are removed. The 
widefield fundus image allows for evaluation 
of the peripheral retina to rule out retinal 
tears or detachment. A separate image 
of the optic nerve with greater resolution 

Key points:
 • Generative artificial intelligence (AI) is a powerful technique that enables 
generation of realistic images in response to an input.  
 • Generative AI models can be trained to:
 • improve quality and remove artifacts from images 
 • forecast response to treatment
 • infer appearance of different imaging modalities from a single image
 • transfer large datasets safely.

 • The potential and pitfalls of generative models are not yet fully explored.
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and better detail is produced to evaluate 
cupping. The visual field is estimated from 
the OCT, and noise is removed for better 
comparison with previous examinations. In 
addition, a visual field prediction 6 months 
into the future is generated. To evaluate 
the status of the patient’s AMD, the central 
fundus is reproduced in true color from the 
Optos image, along with a prediction of how 
a fluorescein angiogram would appear. As 
the presence of fluid is noted with the AI 
system, a prediction of OCT appearance 
after anti-VEGF treatment is created.
All of this information is available after a 

30-second imaging session and before the 
patient is examined by a physician!

Challenges ahead
As enticing as the scenario above might 

be, many challenges remain. Accuracy 
of synthetic data, at least for the time 
being, cannot be guaranteed as it is not 
possible to completely rule out erroneous 
or missing features. This might be a barrier 
to CE marking and clinical implementation 
in cases where the output is directly used 
for diagnosis—for example, for conversion 
between modalities as described above.
Training generative AI is considered a 

far greater technical challenge compared 
with traditional discriminative models,31 
requiring many thousands to millions of 
samples.32 Few medical imaging datasets of 
this size currently exist, potentially limiting 
the quality of generated images.

Conclusion
Generative models are a fascinating 

branch of AI research, with several extremely 
useful applications, such as predicting 
treatment response, enhancing images, and 
obtaining more information out of fewer 
imaging modalities. As with any cutting-
edge technology, however, their application 
in a clinical setting warrants a degree of 
caution as their adverse effects remain 
largely unexplored.
However, it is certain that AI comprises 

an array of powerful tools that are yet to be 
utilized to their fullest potential. Combined 
with lowered barriers to entry, nearly 
limitless computing resources, big data, 
and increasing healthcare demands, many 
breakthroughs are surely on the horizon.
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